
A Brief Summary of DOOM-style Rendering

Robert Forsman and Bernd Kreimeier

July 24, 1996

Abstract

This article serves as a brief summary and �rst introduction to the idea underlying

DOOM-style rendering. It discusses storing the scene geometry using LineDefs, Sid-

eDefs and Sectors, and sketches how to render a scene described by a WAD �le. Its

purpose is to introduce the main concepts of restricted geometry rendering. A list of

references suggests further reading.

Introduction

DOOM by id Software combined a couple of well-known and already used techniques

with newly invented ones in a unique way. While upcoming 3D hardware acceleration

allows for arbitrary scene geometry, restrictions of one kind or another are still valu-

able and sometimes necessary ways to trade versatility for performance or algorithmic

simplicity.

The main restriction of DOOM-style rendering is a static environment that can be

represented as a 2D projection. DOOM used additional restrictions, e.g. did not allow

for sloped 
oors and slanted walls, but these are not as important as the restriction to

a world that is, in principle, only two-dimensional in structure while obviously three-

dimensional in visual appearance.

To discuss this in further detail, we �ll �rst brie
y discuss the representation of the

scene geometry, as used in DOOM. A full summary can be found in [2].

The worlds of DOOM

The DOOM scene geometry is stored in several lookups for Vertices, LineDefs and

Sectors. During BSP building, additional descriptions are generated. In this document

we refer to SubSectors and LineSegs, but ignore Nodes. Placement of objects requires

yet another lookup.

Vertices

Vertices are two-dimensional. This means that multiple vertices of the 3D scene implied

are represented by one projected vertex in the XY plane. The Z coordinate is implicit,

because it has to be obtained from the Sectors.

1



LineDefs and SideDefs

LineDefs are edges in the XY plane, de�ned by a start and an end vertex. Thus

LineDefs have a direction, and a right and a left side. Every LineDef has one or two

SideDefs. If a LineDef only has one SideDef, then this must be the right SideDef.

Consider the following �gure Fig. 1. This LineDef only has one SideDef and it is the

right SideDef (if you stand on the �rst point and face the last point, the Sector is on

your right). Note that Sectors are in turn referenced by SideDefs.

Sector 12

first point

last point
lin

ed
ef

No Sector

Fig. 1

Sector 12

first point

last point

lin
ed

ef

Sector 7

Fig. 2

In Fig. 2, the LineDef has two SideDefs. A Sector 7 is on the left and a Sector 12

is on the right side of the LineDef.

The LineDef represents the geometry of the scene. It could be viewed as a projection

of one, two or three rectangular polygons along z, to the XY plane. The polygons are

implicitly de�ned by the data in the LineDef, its SideDefs and adjacent Sectors. In

consequence, DOOM describes up to three 3D rectangles and eight 3D vertices by two

2D vertices and four z heights.

Sectors

A Sector is an 2D area completely surrounded by LineDefs, and referenced by the

LineDefs' SideDefs. As an example, consider the following Sectors:

2

1 3

4

Fig. 3

You will notice that this area is reminiscent of the starting area in E1M1. There

are 4 pillars that aren't sectors, and there are also two sectors (1,3) that are inside

sector 2.

These Sectors are not necessarily convex polygons, but could be concave, or even

have holes. In addition, as mentioned below, LineDefs could have two SideDefs refer-

encing the same Sector, i.e. have the same Sector adjacent on both sides.

2



Let's look at the numbered list of linedefs that are used to de�ne the sectors:

1

3

2

26

27

28 30

31

32

456

7

8

9

10 11 12

13

14

15

16

17

18
19

20

21

22

23

24

25

29 33

And here's a table of sectors referred to by sidedefs of a linedef. Pay special atten-

tion to the di�erence between linedefs 26-29 and linedefs 30-33.

LineDef left right LineDef left right

number Sector Sector number Sector Sector

1 - 2 17 - 4

2 - 2 18 - 4

3 - 2 19 - 4

4 - 2 20 - 4

5 4 2 21 - 4

6 - 2 22 - 4

7 - 2 23 - 4

8 4 2 24 - 4

9 - 2 25 - 4

10 - 2 26 2 1

11 4 2 27 2 1

12 - 2 28 2 1

13 - 2 29 2 1

14 - 2 30 3 2

15 - 2 31 3 2

16 - 2 32 3 2

33 3 2

Note, however, that there can be two-sided LineDefs with SideDefs referencing the

same Sector on both sides: the partly transparent grate texture walls on E1M1 or

E1M3 are a prime example.

3



Upper, Lower, Middle Textures

While the LineDefs and Sectors completely de�ne the scene geometry, the SideDefs

(as well as the Sectors) determine the visual appearance of the world. DOOM-style

rendering relies heavily on texture mapping to give the world detail and a solid ap-

pearance. For each side of a LineDef, described by a SideDef, there are three possible

surfaces to be textured. These are rectangular polygons always perpendicular to the

XY plane, and are named upper, lower and middle (or normal) texture. For each,

texture coordinate alignment in both directions can be controlled explicitly by o�sets,

and implicitly by pegging attributes representing some natural alignment given by the

scene geometry. The dimensions of the three surfaces are given by the LineDef and the

adjacent Sectors: the length is always the LineDef's length, and the height is given by


oor and ceiling heights of Sectors on one or both sides. For details see [2] or the Web-

View3D description [3]. Note that WebView3D does not allow for di�erently textured

upper and lower textures, and that there are no middle textures on two sided LineDefs

in WebView3D.

Floor and Ceiling Textures

The Sectors de�ne 2D areas which are textured as well, the 
oor, and the ceiling. There

is only a �xed, natural texture alignment given by a �xed size world coordinate aligned

XY grid.

Viewing the world of DOOM

For reasons discussed later, a renderer bene�ts from the restriction to a 2D repre-

sentable scene geometry only if accompanied by a restriction of possible directions of

view. DOOM-style rendering is often called 4.5 degree of freedom rendering. This

means that the POV has three degrees of freedom of movement in X,Y,Z, i.e. arbitrary

translation is possible (neglecting collision detection, of course), but that only one full

degree of freedom in terms of rotation is available: around the Z axis, changing the

azimuth angle. A second rotation for limited looking up and down can be faked by

shearing, but a roll rotation around the view axis is prohibited.

Note that these restrictions are partly due to the restricted geometry, as we will see

below, while others are simply related to special case texture mapping. In addition,

restricted view rendering allows for using a very straightforward cylindrical mapping

for view position independent background, i.e. sky textures.

A Sample Scenery

Here is a sample from the well-known E1M1 map, right at the start. Witness overlays in

the screen plane (status bar, weapon sprites), and partly transparent billboard objects

(the barrel, guts, a dead player sprite).

4



N N
NN

NNNNN

F

F

F F

C C

C

U

U

U

U

L L

Now consider the screenshot and its schematic in the terms coined above: F is a


oor. C is a ceiling. N is a normal or middle texture. U is an upper texture. L is a

lower texture. Some billboards are marked as ellipsoids.

A few obvious observations: 
oors and ceilings could never be adjacent. There are

no visible 
oors above the middle row of the screen, and no visible ceilings below the

middle row of the screen. Ceilings might be separated by uppers, 
oors are separated

by lowers. A middle always separates a 
oor and a ceiling. Taking occlusion into

account, a lower or upper from a pillar might obscure anything behind. An opaque

middle obscures everything behind by de�nition. Note that single-sided LineDefs have

to carry an opaque middle on their right SideDef. Partly transparent textures are only

allowed on middle textures of double sided LineDefs.

5



DOOM-style Rendering Basics

Binary Space Partition

This introduction does not discuss BSP, as there is exhaustive material available, be it

in books [1], on the web [6] or FTP [7]. The 2D BSP used by DOOM partitions possibly

non-convex Sectors, creating SubSectors that are guaranteed to be convex planar 2D

polygons. In the process, it uses LineDefs as partition lines, and splits other LineDefs

to LineSeg segments. During BSP traversal, SubSectors are processed in front to back

order, and for each SubSector the texture and surface data are obtained by referencing

the LineDef and the SideDef and the Sector, starting with each LineSeg found in the

SubSector. All the discussion above is still valid, except that the width of the actual

surface rendered is given by the length of the LineSeg, not the LineDef's length.

Spanning Scanline

There is an alternative rendering approach that does not use a BSP, which has been

used e.g. by Chris Laurel's \wt". This is in principle an edge-sorted rasterizer rotated

by 90 degrees, as, for reasons discussed below, the scanlines are not screen rows, but

screen columns in this case. Sorting is done for each frame, but is based on sorting 2D

LineDefs instead of sorting upper, lower, middle surfaces separately.

Special case Texture Mapping

In the PCGPE [7] you will �nd many examples of a�ne texture mapping. This ap-

proach does not give perspective correct texture mapping in general. As the latter

requires a very expensive division per pixel, it is a common idea to restrict to those

cases in which a�ne texture mapping happens to be correct. This is discussed in detail

in [4], and the basic idea is that a�ne texture mapping yields correct results as long

as we are proceeding along a slice of constant z depth in screen space. Neglecting

free direction texture mapping, this enforces familiar restrictions on scene geometry

and view: the walls have to be perpendicular to the XY plane (thus each wall slice of

constant z distance maps to a screen column), and 
oors and ceilings have to be in the

XY plane (thus each screen row has constant z distance as well on a 
oor or ceiling).

Obviously, rendering 
oors and ceilings is more expensive (we are proceeding along

a diagonal in texture space in most cases), and it is more complicated with respect to

clipping, as we will see. Sean Barrett [4] gives an inner loop in assembly and mentions

the necessity to store 
oor/ceiling textures in a particular way, a technique sometimes

called texture interleaving or pixmap interleaving - the basic idea being to have each

texture row starting on a 256 byte o�set, which allows for fast computation of the

current pixel's address.

Within this document, the most important observation is that rendering walls with

perspective correct texture mapping could be done as fast as it gets, as long as the

view is not allowed to roll or tilt, and as long as we do not have to deal with sloped

or slanted surfaces with textures. In this case, texture mapping a wall slice to a screen

column is equivalent to scaling the texture. Note that limited looking up/down is

done by shifting the vertical slices within the screen columns up or down (including

6



clipping), an operation sometimes called shearing that distorts the view but does not

require changing the rendering approach.

Per column rendering

We learned so far that wall rendering is best done per screen column. One problem

is to determine the start and end column indices from the projection of the vertices,

a problem that has to be solved in 2D only. A fast approach as used by DOOM is

described in [5]. So we know how to determine which screen columns we have to handle

for a given LineSeg or LineDef.

How is a screen column done, then? Both the BSP and the scanline approach have

in common that, somewhere down in the rendering loop, operations are performed

per screen column (with 3D rendering, you would prefer rendering per screen row, for

obvious reasons). From the schematic we learned that within the DOOM world, we

start with a ceiling or an upper texture or a middle texture in the topmost row, and

with a 
oor or a lower or a middle texture in the bottom screen row. No matter what

sequence exactly, we know that a middle will �ll the column �nally.

The most important aspect of front to back rendering is to stop processing the

world as soon as the frame is done anyway, i.e. all other surfaces will not be visible.

So how do we clip our surfaces e�ciently?

Floating Horizons

The BSP approach processes surfaces in several columns, while the scanline approach

by its very nature deals with each screen volume separately, until it is done. For our

discussion this only means that the BSP approach needs to have the same lookup used

per column in as many copies as there are screen columns. Anything else is identical.

It is obvious that, given the restrictions to the scene geometry described above, the

view will grow from top down, and bottom up during front to back rendering. The

part of the screen row that is still empty is always one single slice in the middle of the

column, between the top slice already �lled by ceilings and upper textures, and the

bottom slice �lled by already drawn 
oors and lower textures. As soon as a middle

texture is drawn, we are down. However, there is no guarantee that any middle texture

is visible, it might have been obscured by an upper or lower texture already, or even a


oor or ceiling.

To handle which part of the scenery obscures other parts further away, we introduce

to clipping horizons within the screen column: two indices that indicate the topmost

pixel (from the bottom) and the bottom pixel (from the top) that has already been

drawn. Prior to texture mapping, we simply clip the vertical slice of the wall we want

to render against these 
oating horizons. As soon as the top horizon is identical to

or below the bottom horizon, we are �nished with this column. Using a BSP, we

increment a counter and check against the total number of columns, to see if the frame

is complete. With a scanline approach, we proceed to the next screen column until the

leftmost (or rightmost, depending) is done.

7



Partial Transparency

Obviously, the simple clipping approach used above does not work with partly trans-

parent wall textures or billboard objects (sprites), for the same reason we cannot handle

multiple 
oors and ceilings: in both cases, our single empty slice in the screen column

would have to be split into two or more separated slices.

It is possible to use a span bu�er, essentially a specialized list of already drawn slices

for each column, which has to be done if you want to add multiple 
oor and ceiling

extensions, or include polygon objects in the front to back rendering pass. DOOM-style

rendering sticks to the restrictions, and the simple clipping. Partly transparent walls

and sprites are clipped against the 
oating horizons as soon as they are encountered,

without updating them, and put on a stack. They are processed separately in a back

to front rendering pass as soon as the world has been done by a front to back pass.

Floors and Ceilings

The acute reader will by now have recognized that this descriptions is missing some-

thing essential - namely the rendering of 
oors and ceilings. As has been explained

above, 
oors and ceilings have to be rendered in horizontal slices to get correct results

by a�ne mapping. But our clipping is done by column, not by row.

It happens that this is the most di�cult thing in writing a DOOM-style renderer.

Chris Laurel's \wt" used a 
ood�ll approach that did not work with partly transparent

billboards, and restricted to 
at 
oors and ceilings that could be done in vertical slices,

just like walls, in the �nal release. Philip Stephens' BSP-based version of WebView3D

used perspective correct texture mapping with vertical slices, which trades speed for

algorithmic simplicity. The Di�erence Engine renderer never did 
oor and ceilings

textures in the scanline version. There is a working 
at shading source that does 
oors

and ceilings in horizontal slices using the BSP, written by Jake Hill, that should serve

as a demonstration of how it could be done. The basic idea is to �ll all rows in the

space given by the current and the old top (or bottom) clipping index across the space

spanned by the current LineSeg's projection to the screen.

Summary and Comment

DOOM-style rendering comprises a neat example of how di�erent techniques and re-

strictions �t together to a streamlined design. Restrictions on degree of freedoms a�ect

both scene geometry representation and world to view transformation overhead, as well

as clipping and texture mapping requirements. While there are many examples of ex-

tending a DOOM-style approach to include lots of special cases hacks to soften the

restrictions, or fake more general scene representation, the approach really does work

well by being strict.

On the other hand, certain restrictions are serious design 
aws in retrospect - the

2D collision detection used by DOOM is a prime example. Neglecting the current

height of objects introduced some serious animation and behavior artifacts that even

spoiled gameplay, and the performance gains are negligible.

Even with upcoming 3D hardware, DOOM-style rendering in a more general sense

will have its place. What should be learned from DOOM is that restriction to a 2D

8



representation of the environment is perfectly acceptable for �rst person perspective

games, for a lot of reasons including limited user interface interactions, kinesthetics,

and the fact that within a supposedly man-made virtual world with gravity, there is

not much that is essentially or necessarily 3D.

Improved DOOM-style rendering might use Potential Visible Sets for 2D BSP, which

are easier to approximate in 2D, and 2D based approximations of realtime incremental

radiosity. Realtime update of a BSP will be feasible for 2D a lot earlier than in the 3D

case. Polygon objects are possible using a simpli�ed span bu�er for clipping. Using

a z-�ll during the front to back rendering of the static environment does allow for

particle animation. Many techniques currently developed for 3D rendering e.g. with id

Software's Quake could be used in DOOM-style rendering with a lot less overhead. It

might not always be worth the e�ort with a product in mind, but it will surely prove

educational.

Acknowledgments and Copyright

The authors acknowledge the detailed description written by Matt Fell without which

this document would not have been possible, and the PCGPE collected by Mark Feld-

man, therein the tutorial on texture mapping by Sean Barrett.

This article is Copyright (C) 1996 by Robert Forsman and Bernd Kreimeier. The

�gures and schematics and the description of LineDefs, SideDefs and Sectors were writ-

ten by Robert Forsman, the description of DOOM-style rendering by Bernd Kreimeier.

All rights reserved.

References

[1] James D. Foley, Andries van Dam, Steven K. Feiner, John F. Hughes,

Computer Graphics - Principles and Practice

Addison Wesley, 1990, 1996.

[2] Matt Fell, Uno�cial DOOM Specs, 1993, 1994.

[3] Philip Stephens, Writing a fast 3D graphics engine, 1995.

[4] Sean Barrett, Texture Mapping, In: Mark Feldman, PCGPE, 1994.

[5] William Doughty, One Approach to Real Time Texture Mapping, 1994.

[6] Bretton Wade, BSP Frequently Asked Questions, 1995, 1996.

[7] Mark Feldman, PC Games Programmer's Encyclopedia, 1994.

9


