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1 De�nitions used in this paper

1.1 The world coordinate system

A standard cardinal 3D coordinate system is used to describe the location

of points in a world throughout this paper. The Y axis is considered to be

vertical (with the positive axis pointing up), so the X and Z axes will be

horizontal, as shown in �gure 1.
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Figure 1: The 3D world coordinate axes

A point P denotes a 3D coordinate triplet (P

x

; P

y

; P

z

) in the world co-

ordinate system.
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1.2 The viewing position

The viewing position can be placed anywhere within the world coordinate

system, and is represented by the point V iew. The viewing angle, however,

is restricted so that there is only one degree of freedom: rotation around a

line parallel to the Y axis. This means that the line of sight is always in the

horizontal X-Z plane. This allows us to specify the viewing angle using a

single component V iew

�

, and as you will see later it also helps to simplify

the math required to render a 3D scene.

1.3 The viewing window

The 2D viewing window is a rectangle that stands perpendicular to the line

of sight. The line of sight intersects the centre of the screen at distance of

1 unit (in world coordinates) from the viewing position, as shown in �gure

2. Since the line of sight is always in the horizontal X-Z plane, the viewing

window is always vertical.

line of sightviewpoint

Figure 2: The viewing window

The viewing window de�nes a �eld of vision in the shape of an inverted

pyramid. Only those objects within this �eld of vision can be seen by the

viewer standing at the view point and looking along the line of sight. Fur-

thermore, only objects behind the viewing window are visible. These objects

will be projected onto the viewing window to give a 2D representation of

the 3D view.
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The size of the viewing window is determined by the angle between left

and right, and top and bottom sides of the pyramid. These two angles are

refered to as the horizontal and vertical �elds of view. Figure 3 illustrates

this concept.

(V  , V  , V  )
fov  /2

fov  /2

-X

+X

-Z

+Z

-Y

+Y

zyx
w

h

Figure 3: The horizontal and vertical �elds of view

The width and height of the viewing window in world coordinates can

be computed using simple trigonometry:

window width = 2� tan(

fov

w

2

)

window height = 2� tan(

fov

h

2

)

A typical (and natural looking) value for the horizontal �eld of view is

60

�

, and for the vertical �eld of view a value of 90

�

works well. Hence the

size of the viewing window with this �eld of vision would be:

window width = 2� tan(30

�

) = 1:1547005

window height = 2� tan(45

�

) = 2:0

1.4 Tranformed world coordinate system

To simplify the math required to project 3D points onto a 2D viewing win-

dow, we also de�ne a transformed world coordinate system. This has the

viewing position at the origin, and the viewing angle set to 0

�

. This places

the viewing window in the plane z = 1.

A point P

t

denotes a 3D coordinate triplet (P

tx

; P

ty

; P

tz

) in the trans-

formed world coordinate system.
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1.5 Projected coordinate system

When a transformed point P

t

is projected onto the viewing window, it's

position on the window is denoted by P

p

, which is a 2D coordinate pair

(P

px

; P

py

).

1.6 Screen coordinate system

The viewing screen on your monitor has dimensions 0: : :screen width and

0: : :screen height in pixels. Before a point projected onto the viewing win-

dow, P

p

, can be drawn on the screen it must be converted to screen coordi-

nates P

s

, which is a 2D coordinate pair (P

sx

; P

sy

).

1.7 Projecting 3D points onto the 2D viewing screen

Projection of 3D points (or vertices) onto the 2D viewing screen is greatly

simpli�ed if we �rst transform each vertex V into transformed world coordi-

nates V

t

. To do this, we �rst translate the vertex by �V iew, then we rotate

the vertex by �V iew

�

around the Y axis. This places the viewing window

at z = 1 in the transformed world coordinate system, as shown in �gure 4.
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Figure 4: The transformed 2D viewing window

The equations used to transform each vertex V to V

t

combine the trans-

lation and rotation into a single matrix.

V

tx

= (V

z

� V iew

z

)sin(�V iew

�

) + (V

x

� V iew

x

)cos(�V iew

�

)

V

ty

= V

y

� V iew

y

V

tz

= (V

z

� V iew

z

)cos(�V iew

�

)� (V

x

� V iew

x

)sin(�V iew

�

)
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Having performed this tranformation, the 2D projection V

p

of each trans-

formed vertex V

t

is performed by scaling the V

tx

and V

ty

coordinates by V

tz

.

V

px

=

V

tx

V

tz

V

py

=

V

ty

V

tz

Note that points with V

tz

< 1 are invisible, since such points are in

front of the viewing window. Furthermore, points that lie outside of the

boundaries of the viewing window will also not be visible.

Obtaining the screen coordinate V

s

from the projected coordinate V

p

is

done through the following equations:

S

x

= (P

x

� screen width) +

screen width

2

S

y

= (P

y

� screen height)�

screen height

2

Note that the equation for S

y

e�ectively reverses the direction of the Y

axis, since in world coordinates the positive Y axis points up, but in screen

coordinates "up" means decreasing screen coordinates.

1.8 Fixed point math

It should already be apparent that the math required to perform 3D ren-

dering is going to require 
oating point arithmetic. Unfortunately, unless

your computer has a fast 
oating point unit, this could drastically e�ect the

speed at which your computer is capable of rendering a 3D scene.

There is a solution, however. If we represent values in a �xed point

format, meaning we assign a �xed number of bits to hold the integer part

and a �xed number of bits to hold the fractional part, then we can actually

store values as if they were integers, and even perform arithmetic on these

values using integer math operators.

In practice I have found a 32-bit �xed point representation, with 16 bits

assigned to the integer and fractional parts, to provide su�cient range and

precision.

Consider two �xed point variables a and b. If we assign them the values

10:5 and 5:25 respectively, then the binary �xed point representation will be

as follows:

a = 0000000000001010:1000000000000000

b = 0000000000000101:0100000000000000

If you ignore the binary point, then you have the integer representation

of a and b. In other words, the position of the binary point can be implied

since it never moves.
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1.8.1 Basic arithmetic

Adding a and b is the same as adding two integers. Similiarly, subtraction

is just an integer operation.

Multiplication and division are slightly more complex. When a and b are

multiplied as integers, the binary point is shifted 16 places to the left. This

means the result must be shifted 16 places to the right in order to obtain

the right answer.

Fixed point division requires that the dividend be shifted 16 places to the

left before integer division by the divisor takes place. Scaling the dividend

ensures that we obtain a fractional part to our answer.

Note that �xed point multiplication and division requires temporary

results that are 48 bits wide. This fact needs to be kept in mind, since not

all implementations of high level languages (such as C) can deal with values

that large.

1.8.2 Trigonometric functions

Trigonometric functions can be expensive operations, and since a rendering

engine makes substantial use of trigonometry, a faster way of computing

them is necessary.

Fortunately, the rendering engine described in this paper only requires

sine and cosine values for a discrete set of angles, in increments of the angle

that exists between two view rays passing through adjacent screen columns,

as shown by �gure 5. This means we can generate lookup tables for sine

and cosine prior to rendering the �rst frame.

viewing position

viewing screen

viewing angle

column n

column n+1

Figure 5: View rays passing through the viewing screen
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2 The de�nition of a 3D world

2.1 Architectural components

A 3D world is comprised of one or more regions. Each region is in essense

a room: it has a 
oor (and optionally a ceiling) enclosed by three or more

walls. Figure 6 gives an example of a world consisting of two regions.

Region 2
Region 1

Figure 6: An example world with two regions

Note how all of the walls in �gure 6 are rectangular and stand vertically;

and the 
oors and ceilings are polygons that lie horizontally, with their

sides determined by the position of the walls. These restrictions in world

architecture are designed to speed up the rendering of worlds.

Also note that the wall seperating the two regions in �gure 6 contains a

window that permits passage between them. Because the 
oors and ceilings

of adjoining regions can be at di�erent heights, we use wall segments to join

them together, with the window appearing between them.

A further restriction placed upon world architecture is that neither re-

gions nor walls are allowed to overlap. This means that you cannot place a

room directly above or below another room. However, even with all of these

restrictions it is possible to design worlds containing complex structures,

such as stairs, platforms, pits, tunnels and so on.

2.2 Texture mapping

An important ingredient in presenting a realistic-looking 3D world is the

use of texture mapping on all walls, 
oors and ceilings. A texture map is
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a rectangular image derived from any source i.e. it can be a photograph,

painting, or drawing of any description. It is possible for a texture map

to be an arbitrary size, although to enhance rendering speed it is better to

restrict the dimensions of a texture map to be a power of two (such as 256

or 512 pixels in width and height).

By laying texture maps in tile-like fashion onto all surfaces in the world,

you can achieve the kind of realism shown in �gure 7 (this is an image from

WebView3D, a real implemention of the renderer described in this paper;

the original image is in colour).

Figure 7: An example of a textured mapped world

Texture maps can be scaled and positioned on walls and on 
oors and

ceilings. It is also possible to rotate 
oor and ceiling texture around a given

point in a region (for reasons of speed this is not permitted on walls). All

of these transformations help to create a more realistic-looking world.

2.3 Sprites

Sprites are used to represent objects that move around a world. They are

basically just a rectangular image that stands upright (vertical) like walls

do, and have transparent pixels so that the object can appear to have an

arbitrary shape.
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A sprite can be one-sided or many-sided. A one-sided sprite is rendered

so that it always faces the viewer; such a sprite will look 
at since if you walk

around it, it will look the same from all angles. A many-sided sprite, on the

other hand, will be rendered with one of several images depending on the

angle that you view it from; thus as you walk around a many-sided sprite,

the changing images will give the appearance of viewing a three-dimensional

object from di�erent sides.

Sprites can also be animated by changing the images being displayed on

each side for each frame of the rendered scene.

Figure 8 shows a scene with a sprite.

Figure 8: An example of a sprite
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2.4 Representing the world as a 2D map

It may seem logical that the shape, size and position of the walls, 
oors and

ceilings and sprites should be de�ned by a set of vertices speci�ed in world

coordinates. However, as �gure 9 shows, it is possible to de�ne the position

and length of each wall in �gure 6 using 2D vertices in the X-Z plane, which

only leaves the height of the 
oor and ceiling to be speci�ed for each region.

Region 2Region 1

Figure 9: A 2D overhead map of the world in �gure 6

Note that the top and bottom Y coordinates of each wall can be deter-

mined from the height of the ceiling and 
oor of the region(s) that the wall

borders. This gives rise to the idea that a wall can have two sides, both of

which can be of a di�erent height. Figure 10 illustrates this concept.

Figure 10: A two-sided wall
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Sprites, on the other hand, being freely moving objects need to have

their dimensions speci�ed seperately. The position of a sprite in the world

is given by a single 2D vertex that represents the center of the object, and

it's Y coordinate is typically determined at run-time to match the region it

is currently in (so that it appears to be resting on the 
oor, for instance).

Thus a world can be de�ned using four components:

� A list of vertices. Each vertex de�nes the end-point of one or more

walls, and is given as a 2D world coordinate (V

x

; V

z

). Since most walls

share a vertex, only having to specify each vertex once can reduce the

amount of data needed to de�ne a world dramatically.

� A list of region de�nitions. Despite what you might think, a region

de�nition does not contain a list of the walls that de�ne it's shape. As

will be explained later, it is actually more convieniant for each wall

de�nition to specify which one or two regions it borders. Thus the only

information that a region de�nition contains is that which pertains to


oors and ceilings, namely:

{ The y coordinate of the 
oor and ceiling, floor

y

and ceiling

y

.

{ Pointers to the texture maps used to render the 
oor and ceiling.

{ The scaling factor for texture on the 
oor and ceiling.

{ The coordinate (T

x

; T

z

) within the region from which to start

rendering the �rst texture tile.

{ The angle T

�

by which to rotate the texture around the coordi-

nate (T

x

; T

z

).

� A list of wall de�nitions. A wall de�nition contains the following

information:

{ Pointers to the left and right vertex.

{ Pointers to the front and rear region (some walls may not have a

region behind them, and only de�ne a front region).

{ Pointers to the texture maps used to render the front and rear

side of the wall. Those walls that don't de�ne a rear region will

also not de�ne a rear texture, since the viewing position is not

permitted to be outside of a region, meaning the rear side of such

walls will never be seen.

11



{ The scaling factors for texture on the front and rear sides of the

wall.

{ The o�sets from the top-left corner of the wall from which to

start rendering the �rst texture tile on the front and rear sides.

Figure 11 should help to illustrate what we mean by left and right

vertices, and front and rear regions, when it comes to de�ning a wall.

front region

back region
Right vertex

Left vertex

Figure 11: A two-sided wall

� A list of sprites. A sprite de�nition has the following components:

{ A pointer to the centre vertex.

{ The width and height of the sprite.

{ The number of sides the sprite has. For improved rendering speed

it is typical to limit this to a speci�c set of values, such as 1, 4

and 8.

{ A pointer to to the texture map(s) used to render the sprite.

The number of texture maps depends on the number of sides the

sprite has. Note that if the sprite were to be animated in some

way, there could be several images de�ned per side of the sprite,

leading to a much larger set of texture maps overall.
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3 Rendering the world

3.1 Summary of the the rendering process

Figure 12 shows the same example world shown in �gure 6. The viewing

position has been placed in the centre of region 2, with the viewing angle

directed towards region 1.

Region 1

Region 2

Figure 12: An example world with viewing position and angle included

The rendered scene will look like �gure 13 (minus the texture mapping,

of course).

Figure 13: The example world as rendered on the viewing screen
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The rendering process can be summarised as follows:

1. Sorting of visible walls by depth. We need to know how close to

the viewpoint each wall is, so that we can render them in the right

order.

2. Projection of walls onto the viewing screen. In order to deter-

mine which of the walls in a world are currently within the �eld of

vision, we project them onto the viewing plane and reject those that

fall outside of the viewing screen.

3. Rendering with hidden surface removal. Walls may be clipped

by the viewing screen, or obscured by other walls closer to the view-

point. All walls, 
oors and ceilings must be rendered through a texture

mapping process to give them a solid and realistic appearance.

Note that this summary does not mention 
oors, ceilings or sprites until

the last step. Since every wall in a world is intended to mark the boundary

of a region, the position and shape of all 
oors and ceilings is linked to that

of each wall in the scene.

The rendering of sprites will be discussed in a seperate section since

sprites can be transparent, where as walls, 
oors and ceilings cannot. This

requires a di�erent technique for placing sprites into a scene.

The rendering process may sound computationally expensive, but in ac-

tual fact the restrictions placed upon the architecture of a world, as described

in section 2.1, actually means that the rendering process is quite fast.

We will now look at each rendering step in detail.

3.2 Step 1: Sorting the walls by depth

The �rst step in the rendering process is to sort all walls in order of depth,

from nearest to furthest. Sorting is done in the X-Z plane using the overhead

2D map representation of the world, which means we are comparing lines

rather than rectangles, which simpli�es the math. There is no need to sort

walls in three dimensions since all walls are aligned vertically.

3.2.1 Using a standard sort

In order to use a standard sort, such as quicksort, we need the location

of walls in the transformed world coordinate system, since that places the

viewpoint at the origin, making the Z axis a convienant measure of depth.
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All sorts require a comparision function. One way to determine whether

a wall is in front of or behind another is to ask the following two questions:

� Is wall A wholly in front of the in�nite line running through wall B?

If the answer is yes, wall A may obscure wall B, and so wall A is

considered to be in front of wall B.

wall Bwall A
z axis

Figure 14: Wall A is wholly in front of wall B

If the answer is no, go onto the next question.

� Is wall B wholly behind the in�nite line running through wall A?

If the answer is yes, wall B can never obscure wall A, so wall A is

considered to be in front of wall B.

z axis

wall A

wall B

Figure 15: Wall B is wholly behind wall A

If the answer is no, the walls must overlap. But since one of the

restrictions on world architecture mentioned in section 2.1 is that walls

must not overlap, this condition will never be met.

15



3.2.2 A faster sorting technique

Rather than performing a standard sort every time the viewpoint changes,

which can be time-consuming for worlds containing a large number of walls,

it is possible to store the walls in a special data structure called a Binary

Space Partition tree, or BSP tree for short, which can be traversed to de-

termine the wall order more quickly than a sort can be performed. It is

possible to make use of a variation of the wall comparision technique from

the previous section to construct the BSP tree prior to rendering a single

frame.

E

B1

F
B2

D

C A

Figure 16: Partitioning walls into two groups

Consider �gure 16. We can partition the walls into two distinct groups;

those in front of the in�nite line running through wall A, and those behind

it. Note that the concept of in front of and behind is no longer related to how

far along the Z axis each wall is in tranformed world coordinates, since we

are not dealing with any particular viewpoint. Instead, we use the concept

of the front and rear sides of walls as described in section 2.4.

Notice how wall B actually crosses the in�nite line, which means it is

neither wholly in front or behind wall A. This situation occurs as a result

of not having a viewpoint as a reference. In order to maintain two distinct

groupings, that wall must be split into two segments, wall B1 and B2.

This grouping can be represented by the binary tree shown in �gure 17.

B2, E, F B1, C, D

A

frontrear

Figure 17: Partitioning walls into two groups
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If we now choose one wall from each subgroup at random, we can parti-

tion each subgroup in the same fashion as the original group. This process

of partitioning continues until we end up with a binary (or BSP) tree with

one wall per node, such as that shown �gure 18. Note that the same group

of walls can lead to many di�erent BSP trees, all of which are equivilant.

A

F C

B2

B1E

D

Figure 18: The �nal BSP tree

The BSP tree provides us with complete information regarding the loca-

tion of each wall in respect to all other walls. Each node in the tree represents

a single wall, with the rear branch pointing to walls that are behind it, and

the front branch pointing to walls that are in front of it.

In order to determine the ordering of the walls in respect to the position

of a given viewpoint, we can start at the root of the tree and traverse it in

an order dictated by which side of each wall the viewpoint is on; the order

in which the walls are traversed is the required front to rear ordering of the

walls on the viewing screen.

The actual traversal algorithm is as follows:

1. Start at the root node. The ordered list of walls is initially empty.

2. If the viewpoint is in front of the wall represented by this node:

(a) Traverse the front branch if there is one, repeating step 2 recur-

sively for the �rst node on that branch.

(b) On return, add the wall represented by this node to the end of

the ordered list.

(c) Traverse the rear branch if there is one, repeating step 2 recur-

sively for the �rst node on that branch.
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Otherwise the viewpoint is behind the wall represented by this node,

so:

(a) Traverse the rear branch if there is one, repeating step 2 recur-

sively for the �rst node on that branch.

(b) On return, add the wall represented by this node to the end of

the ordered list.

(c) Traverse the front branch if there is one, repeating step 2 recur-

sively for the �rst node on that branch.

3.3 Step 2: Projecting the walls onto the viewing screen

Only the four corner vertices of each wall needs to be projected onto the

screen in order that we know the position and shape of each wall in two

dimensions. The mathematics required to project 3D points onto the viewing

screen were discussed in section 1.7, so they won't be repeated here.

Because of the restrictions in world architecture described in section 2.1,

the left and right edges of a wall remain vertical when projected onto the

viewing screen, and the top and bottom edges either slope away or towards

the viewer, or are horizontal if the wall is viewed head-on. This means that

the projection of a wall can be described by two screen x coordinates and

four screen y coordinates as shown in �gure 19.

sy

left sx sx

sytop_right

sytop_left

bot_left sy

bot_right

right

Figure 19: The projection of a wall

Recall from section 2.4 that a world is actually described by a 2D map,

with a wall represented by a straight line between a left and right vertex in

the X-Z plane. In other words, we only know the coordinates (left

x

; left

z

)

and (right

x

; right

z

) to begin with.
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Obtaining the six screen coordinates of each wall can be done through

the following set of steps. This procedure also prunes walls that turn out

to be completely outside the �eld of vision from the list to be rendered,

although walls that are partially on screen remain.

1. If both left

z

and right

z

are less than 1, then this means the wall is in

front of the viewing screen, and hence is not visible and can be pruned

from the lists of walls to be rendered. The remaining steps can then

be skipped for this wall.

2. Compute left

sx

and right

sx

by projecting left

x

and right

x

onto the

viewing screen.

3. If both left

sx

and right

sx

are less than 0 or greater than screen width,

then the wall is not visible and can be pruned from the list of walls to

be rendered, and the remaining steps skipped for this wall.

4. If left

sx

is less than right

sx

, then we are viewing the front side of the

wall. But if left

sx

is greater than right

sx

we are viewing the rear side

of the wall.

Knowing which side of the wall we are viewing, we can determine

which region is on that side of the wall.

5. Project floor

y

from that region onto the viewing screen at left

z

and

right

z

to obtain the screen coordinates bot left

sx

and bot right

sx

re-

spectively.

6. Project ceiling

y

from the same region onto the viewing screen at left

z

and right

z

to obtain the screen coordinates bot left

sx

and bot right

sx

respectively.

3.4 Step 3a: Rendering walls with hidden surface removal

Since the left and right edges of walls are vertical when projected, this

suggests that the most direct way to render each wall is to draw it one

screen column at a time, from the leftmost screen column occupied by the

wall, left

sx

, to the rightmost, right

sx

. The top and bottom coordinates of

the wall in each screen column, top

sy

and bot

sy

, can be interpolated linearly

from left to right, since the top and bottom edges of the wall are straight

lines. Figure 20 illustrates the concept.
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top sy

sy

left sx rightsx

sytop_right

sytop_left

bot_left sy

bot_right

bot sy

Figure 20: Rendering a wall column-by-column

The constants �top

sy

and �bot

sy

would be calculated from the screen

coordinates of the corners as follows:

�top

sy

=

top right

sy

�top left

sy

right

sx

�left

sx

�bot

sy

=

bot right

sy

�bot left

sy

right

sx

�left

sx

3.4.1 Clipping at the vertical edges of the viewing screen

If a wall is entirely visible on the viewing screen, then top

sy

will range

between top left

sy

and top right

sy

in steps of �top

sy

. Similiarly for bot

sy

.

However, it is common for a wall to be clipped by the left and/or right

edge of the viewing screen. While this won't a�ect the values of �top

sy

and

�bot

sy

, it will obviously change the range of values for top

sy

and bot

sy

.

If we design the wall rendering algorithm not to move beyond the right

edge of the screen, then we only need to set the initial value of top

sy

and

bot

sy

approapiately according to whether the wall is clipped by the left edge

of the viewing screen or not. The following conditional equations will do the

trick.

top

sy

= top left

sy

; iff left

sx

>= 0

top

sy

= top left

sy

� top left

sx

�top

sy

; iff left

sx

< 0

bot

sy

= bot left

sy

; iff left

sx

>= 0

bot

sy

= bot left

sy

� bot left

sx

�bot

sy

; iff left

sx

< 0
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3.4.2 Clipping at vertical wall edges

Recall that a wall stands vertically, and reaches from 
oor to ceiling, meaning

that walls further away can only be clipped at the vertical edges of the closer

wall, as shown in �gure 21.

Figure 21: Clipping to the vertical edges of a wall

In other words, the closest wall rendered into a given screen column will

hide walls further away that would otherwise have been rendered into the

same screen column. This means that hidden wall removal can be performed

one screen column at a time, simply by choosing the closest wall in each

screen column and rendering that.

3.4.3 Clipping at sloping window edges

A wall with a window does not reach from 
oor to ceiling, but has a hole in

the middle through which walls further back are visible, as shown in �gure

22.

Figure 22: Clipping to the edges of a window
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This is the only situation in which several walls can be rendered into

the one screen column. We must render each wall into the screen column in

turn, from nearest to furthest. Each wall rendered must be clipped to the

window made by the previous (closer) wall. The closest wall will be clipped

to the top and bottom edge of the viewing screen.

3.4.4 Adding texture to a wall

To add realism, a wall is covered with a texture. In essense the wall is

divided into a grid of squares, each square occupied by a texel pixel, or texel

(see �gure 23).

Figure 23: Layout of wall texture

When texels are viewed close up, they will appear as four-sided polygons,

and hence will occupy more than one screen pixel. At a certain distance from

the viewer, however, texels will be smaller than one screen pixel. In this case,

we cannot render multiple texels into one screen pixel, so instead we must

draw every n

th

texel across and down a wall. Under certain circumstances

this can lead to a moire e�ect being produced (such as when a texture map

pattern consists of small lines drawn close together), but in general the result

is a photo-realistic textured wall.

Note that since walls are always vertical, the columns of texture to be

rendered on a wall are also vertical. Since we are drawing walls one column

at a time, this fact can be used to our advantage to speed up the rendering

process.
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3.4.5 Determining which texel columns to render

Figure 23 should make it clear that the number of screen columns occupied

by each texture column is not constant. As a wall recedes into the distance,

the texture columns appear increasingly closer together.

In order to determine which texel column to draw in a given screen

column, we need to know how far from the left edge of the projected wall

the screen column intersects, represented as a value between 0 (the left edge)

and 1 (the right edge). This is known as the wall intercept.

This value can be determined via a line intersection algorithm. Basically

what we do is project a line (or view ray) from the view position, through

the viewing screen at the X coordinate matching the screen column we are

drawing into, and determine where this view ray intersects the wall. Figure

24 illustrates this geometric concept.

view point

view ray

view screen

wall

(x4,z4)

(x3,z3)

(x1,z1)

(xi,zi)

(x2,z2)

Figure 24: Determing the wall intercept

The following equations are the standard line intersection equations that

can be found in any good mathematical textbook.
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In applying to it the calculation of wall intercept, we can make the

following substititions.
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x

3

= 0

z

3

= 0

y

4

= 1

ua = wall intercept

These substitutions are possible because we are dealing with the trans-

formed coordinates of the vertices when the view point is moved to the origin

and the viewing plane is rotated to Z = 1. The equation for wall intercept

is therefore:

wall intercept =

x
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Once we know the value of wall intercept, then if we know how many

texel columns are to be drawn across the entire width of the wall, the texel

column to draw in the given screen column can be computed as:

texel column = texel columns� wall intercept + texel offset

The variable texel offset is used to shift the texture on a wall left by

that many texel columns (or right if the value is negative). This is useful

for positioning texture on adjoining walls so that it joins seamlessly.

Scaling the texture across a wall is achieved by selecting an approapiate

value for texel columns. For example, if a texture map is 256x256 texels in

size, and we wish to render it twice across the wall, then we would choose a

value of 512 for texel columns.

3.4.6 Determining which texels in a column to render

Having determined which column of texels are to be rendered in a given

screen column, we need to know which texel occupies each pixel in that

screen column. This turns out to be much easier to calculate, since the

spacing between texels in a given column can be considered to be constant.

In other words, we can compute a �texel row constant and use it to inter-

polate the values of texel row for each screen pixel as we plot them from

top to bottom.

The computation of �texel row for each wall column being rendered is

fairly straight forward:

�texel row =

texel rows

bot

sy

� top

sy
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By using �xed-point variables for texel row and �texel row, we can

cope with the situation where texels do not occupy a whole number of screen

pixels. This prevents the texture from looking ragged.

We can scale the texture down the wall in the same way as we scaled it

across the wall, by choosing an approapiate value for the number of texel

rows to render, texel rows. Positioning the texture by sliding it up or down

is a matter of choosing a non-zero value for texel row initially.

3.5 Step 3b: Rendering 
oors and ceilings with hidden sur-

face removal

Some of the same principles for rendering vertical walls can be used in render-

ing textured 
oors and ceilings, but in general the process is more complex

due to their arbitrary shape. However, the fact that every side of a 
oor

and ceiling is occupied by a wall is very important.

Since each wall marks the edge of a region, then by de�nition there is a

section of 
oor and ceiling to be rendered in front of each wall.

It turns out that as a general rule, when we render a wall into a given

screen column, the 
oor will �ll up the column below the wall, and the

ceiling will �ll up the column above the wall. Since a wall de�nition includes

pointers to the region(s) that it borders, this information can be used in

determining which texture map appears in each 
oor and ceiling column.

Floors and ceilings are textured using a square grid, just like the walls

are. However, unlike walls this grid can be oriented at any angle. In addition,

as the viewer rotates, so must the texture on the 
oors and ceilings to match

the changing view, as shown in �gure 25.

Figure 25: Layout of texels on 
oors and ceilings
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Even though the texture on 
oors and ceilings can rotate, the following

two statements still hold true due to 
oors and ceilings being horizontal:

� The spacing between texels rendered down a screen column decreases

the further from the viewpoint the texels are.

� The spacing between texels rendered across a screen row remains con-

stant.

If the texture on a 
oor or ceiling has not been rotated, then a given

screen row represents a line running through a single row of the texture map,

in much the same way that for wall, a given screen column represents a line

running through a single column of the wall's texture map.

However, if we rotate the 
oor or ceiling texture by �V iew

�

, then that

same screen row is a line running through the texture map at that angle.

Figure 26 illustrates this concept.

View
O

Figure 26: How a screen row intersects a texture map

This means that we can linearly interpolate texels across a screen row

using two constants �texel row and �texel col, which represent the slope of

the line running through the texture map for the current texture orientation.

3.5.1 Determining the initial texel coordinate

Before we can render the screen row, however, we need to determine the

initial coordinate (texel col; texel row) for the leftmost pixel in that row.

This can be done by "reversing the projection", that is to say, converting

the the screen coordinates of the leftmost pixel, (P

sx

; P

sy

) back into world

coordinates, (P

x

; P

y

; P

z

).
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The �rst step is to determine what the transformed world coordinates

of the leftmost pixel, (P

tx

; P

ty

; P

tz

) are. This is possible since we already

know P

ty

; it is the translated height of the 
oor or ceiling the leftmost pixel

belongs to.

The equations for computing P

tz

and P

tx

are as follows:

P

tz

= P

ty

�

1

P

sy

P

tx

= P

sx

� P

tz

Note how the order of evaluation of these two equations is important,

since P

tx

depends on having computed P

tz

�rst.

Now we can compute the original world coordinates by rotating the point

by V iew

�

and translating it by (V iew

x

; V iew

y

; V iew

z

).

3.5.2 Determining the texel interpolation constants

We can compute the interpolation constants for the screen row using simple

trigonometry.

z = texel_rowz = 1

texel_col

texel_row

View O

viewpoint

z axis

window_width

texel_width

Figure 27: Determining the interpolation constants

Figure 27 shows a triangle formed by two view rays passing through

adjacent screen columns. In terms of projected coordinates the seperation

between two screen columns is a constant, �window width, derived quite

simply as:

�window width =

window width

screen width
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The constant �texel width is the distance along the line running through

the texture map in world coordinates for the screen row. We know that at

z = 1, �texel width would be �window width. To compute �texel width

at z = texel row however, we can use a reverse projection:

�texel width = �window width� texel row

Now all we need to determine are the interpolation constants, �texel row

and �texel col, which can be calculated via simple trigonometry:

�texel col = �texel width� cos(�view

�

)

�texel row = �texel width� sin(�view

�

)

3.6 Rendering sprites

Because sprites can have transparent pixels, they must be rendered after all

of the walls, 
oors and ceilings have been completed, and in the order of

furthest to nearest.

Recall from section 2.3 that sprites are always facing towards the viewer,

meaning they are rendered as rectangles. This makes sorting sprites by

distance a trival task, as both left and right edges of the sprite are at the

same distance from the viewer. Thus a sort by the value of the z coordinate

of each sprite's central vertex is su�cient, using a standard sort function

such as quicksort. Note that using a standard sort means there should be

an upper limit on how many sprites can be de�ned in a world, to ensure

the sort does not take too much time. We cannot represent the position of

sprites in a BSP tree to speed up the sort because sprites can move around.

The fact that sprites are rectanglar in shape when projected onto the

viewing screen means that the texture can be linearly interpolated both

across and down a sprite. Furthermore, since the texture map occupies the

entire area of the sprite, determining the interpolation constants is trivial:

�texel col =

texel columns

sprite screen width

�texel row =

texel rows

sprite screen height

No hidden surface removal is necessary against the edges of sprites be-

cause of their transparent nature, but sprites can still be clipped by walls

closer to the viewpoint. This means that as we render a sprite into a screen

column, we need to know which walls rendered into that screen column were

in front of the sprite.
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This can be done by extending the wall rendering process that was de-

scribed in section 3.4 to record the distance of each wall, and the top and

bottom screen y coordinate of the clipping window created by that wall,

into a list. Then when it comes time to render each sprite into that screen

column, from furthest to nearest, we step through the list in reverse looking

for the �rst wall that is closer than the sprite to be rendered, and use the

clipping window of that wall to ensure the sprite is approapiately clipped.

But how do we determine the distance of each wall in a given screen

column? We need to extend the wall rendering process further to interpolate

the distance as the wall is rendered column-by-column, from left to right.

Unfortunately, distance cannot be interpolated linearly, but

1

distance

can.

We know the distance of the left and right edge of the wall, which is

just left

tz

and right

tz

, taken from the transformed coordinates of the left

and right vertices. Thus the initial and �nal value of

1

distance

is just

1

left

tz

and

1

right

tz

respectively. We know the range of screen columns that the wall

occupies, which is left

sx

to right

sx

. Thus we can compute the interpolate

constant as:

�

1

distance

=

1

right

tz

�

1

left

tz

right

sx

� left

sx

3.7 Lighting e�ects

Figure 28 shows another real view from the WebView rendering engine that

adds a lighting e�ect to the scene. Basically, the further away from the

viewpoint an object is, along the Z (or depth) axis, the darker it appears.

Since we are now computing

1

distance

for each wall column as it is rendered

in order to perform hidden surface removal for sprites, it is trivial to use

this value to determine how bright the pixels should be in each wall column.

Similiarly, the distance of the sprite can be used to determine how bright

the sprite should be rendered. Finally, the distance of each 
oor and ceiling

row, P

tz

, as computed in section 3.5.1 can be used to determine how bright

each row of the 
oor and ceiling should be.

Thus we can add this simple lighting e�ect with almost minimal impact

to the rendering process.
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Figure 28: Adding lighting e�ects
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